隨著電子系統(tǒng)越來越朝著多功能、更高性能和更小封裝的趨勢發(fā)展,系統(tǒng)散熱問題日漸成為設計環(huán)節(jié)中必須考慮的因素。系統(tǒng)過熱會降低性能,損壞元件或產生安全隱患。為跟蹤并降低系統(tǒng)散熱而引發(fā)的問題,通常需要監(jiān)控兩個參數:持續(xù)溫度測量和過熱警報。
用于進行持續(xù)溫度測量和過熱警報指示的傳統(tǒng)分離元件電路在傳感器元件中使用熱敏電阻器(熱敏電阻),通常采用負溫度系數(NTC)熱敏電阻。隨著溫度的升高,NTC熱敏電阻的電阻值降低。
處理器的模數轉換器用于采集溫度模擬電壓(VteMP)。當溫度超出臨界值時,數字比較器的輸出端會驅動處理器的輸入端進行提示。
電壓分頻器直接衍生模擬溫度信號,作為熱敏電阻溫度模擬信號的電壓電平。RBIAS電阻器能夠設置電路增益,并使熱敏電阻保持在允許的功率內工作,從而最大限度地減小溫度導致的電阻誤差。過熱警報通過將熱敏電阻的輸出端與比較器的輸入端相連接而產生。參考電壓與比較器的另一輸入端相連,以設置比較器輸出端被激活的電壓值(過熱電平)。通過采用磁滯反饋回路用于避免比較器在VTEMP等于VREF時來回快速開關。
但是分立熱敏電阻解決方案會存在許多設計問題。而LM57集成模擬溫度傳感器和溫度開關能夠解決這些設計問題,并提高系統(tǒng)的性能。
NTC電路的另一個誤差源是VTRIP的誤差。最大程度降低這一誤差的一種途徑是使用高精度參考端。但是,比較器的輸入端會收集到來自參考端的噪聲。比較器的跳脫點會隨著噪聲產生的信號電平的變化而不同。LM57采用一種專利技術從而解決了這個問題。用戶可以通過選擇兩個電阻器RSENSE1和RSENSE2的值設置VTRIP的值。LM57使用數模轉換器確定跳脫電壓范圍。只要感應線路中電壓在指定范圍內,跳脫溫度就不會產生變化。這表示LM57感應輸入不會受到輸入端適量噪聲的影響。這還意味著只要電阻器的容差在1%或更低,各電阻器的跳脫點就不會變化。
在傳感器測量中獲得最大的精確度需要注意量化噪聲誤差,這是由模擬信號向二進制數據轉換產生的誤差。模擬信號經過數字化,得出的是一個接近實際測得模擬值的數字值。數字測量的最小增量(LSB)是將模數轉換器參考電壓除以模數轉換器的可數代碼數得出的電壓。例如,使用2.56V參考電壓的8位模數轉換器產生的LSB值為2.56V ÷ 28 = 10mV。測得的模擬值和數字值之間的任何差值將稱為轉換中的誤差,這被稱為轉換噪聲或轉換誤差。例如,如果嘗試采集1.384V信號,此信號經數字化獲得接近10mV的值,假設達到1.380V,則采樣值具有4mV的轉換噪聲值。
那么,此噪聲在溫度誤差中意味著什么?答案取決于傳感器輸出的增益。傳感器的增益幅度越大,就越少受到噪聲的影響——傳感器增益越高,量化噪聲產生的誤差越小。
由于采取單一封裝,體積小,從而節(jié)省了板空間和生產成本,并提高了質量。如果在分立解決方案中結合多個元件將占用更大板空間,因為各元件間需要保持最小間距。設計每增加一個新元件,在電路中放置該元件的成本就累加到產品成本中。每個附加元件都需要增加一個設備和兩個或更多連線,因此在設計中需要考慮更多的問題。